DARPA STAB Kickoff Meeting:

Liquid Crystal Agile Beam Steering

Bruce Winker

Rockwell Science Center, Thousand Oaks CA

August 8, 2000

RSC Liquid Crystal Agile Beam Steering Program

- Applications: Laser Comm and Target Designation
- 3 year baseline program: \$2.4M
- 4th year options: \$682K

Liquid Crystal Agile Beam Steering (LCABS) Architecture

- No moving parts / scalable technology
- Random access multiple target addressing
- 2D "super-diffraction-limited" scanning over +/- 48°
- >1 kHz switching speed (growth path to >4 kHz)
- High power handling capability
 - 5 W average; >5 MW pulsed (0.5 cm beam dia.)
- Overall optical efficiency ~50% or better
- SLM fine angle stage
 - -> Enables adaptive optics wavefront correction

LC on Si

SLM

Coarse Angle Beam Steering

- λ/2 Tunable LC Retarder (λ/2 TLR)
 - Dual frequency LC tunable waveplate
 - 2 kHz demonstrated @ λ =1.55 μm
 - High efficiency transparent electrode
- Birefringent phase grating (BPG)
 - Photopatterned birefringent thin film
 - LC Prism / Cholesteric LC thin film
 - Phase grating profile optimized by finite difference time domain modeling
- Multiple stages -> Optical efficiency challenge

DARPA_KO_LC_STAB- 4

Statement of Work Summary

		Schedule (MO)
•	Baseline Program	
	 1D Fine Angle Steering 	1-36
	 Feasibility Assessement 	
	 Prototype Development 	
	 Optical Test and Evaluation 	
	 1D Coarse Angle Steering 	1-36
	 Feasibility Demonstration 	
	· Prototype Development	
	 Portable 1D Digital Beam Deflector 	
	 Optical Test and Evaluation 	
•	Option 1: 2D Fine Angle Steering	37-48
	Wavefront Control SLM	
	 Optical Test and Demonstration 	
	•	27.40
•	Option 2: 2D Coarse Angle Steering	37-48
	 2D Digital Beam Deflector 	
	 Optical Test and Demonstration 	

Baseline Program Deliverables

	Schedule (MO)
Phase I:	
 Reports 	12
 Component Models and Optical Test Equipment 	
 Preliminary Optical Design 	
 Analog FLC Feasibility Assessment 	
 Digital Beam Deflector Feasibility Assessment 	
Phase II:	
 Demonstrations 	18
 1-pixel Analog FLC Modulator 	
 DFLC Beam Steering Device 	
 Custom Controller for 1D Beam Steering Devices 	
Digital Beam Deflector Components	

Baseline Program Deliverables Cont'd

	Schedule (MO)
Phase II:	
 Demonstrations (enhanced performance) 	24
 1-pixel Analog FLC Modulator 	
 DFLC Beam Steering Device 	
 1D Super-Diffraction-Limited Beam Steering 	
 Digital Beam Deflector Components 	
 Demonstrations 	30
 1D FLC Beam Steering Device 	
 1D Super-Diffraction-Limited Beam Steering 	
 1D Digital Beam Deflector 	
 Deliverables 	36
 Detailed Design for Portable 2D Beam Steering Demo Unit 	
 Integrated 1D Beam Steering Demo Unit 	

RSC LC STAB Program Schedule

Baseline Program

Baseline Program: 1D Agile Beam Steering

RSC LC STAB Program Schedule Options

2D Agile Beam Steering Options

Switching Speed of Nematic Liquid Crystals

- Dielectric Anisotropy
 - · Induced dipole:

$$\Delta \varepsilon = \varepsilon_{||} - \varepsilon_{\perp} > 0$$
 $E \uparrow \frac{-3}{2} \rightarrow \frac{1}{2}$
 $\Delta \varepsilon < 0$
 $E \uparrow \frac{1}{2} \rightarrow \frac{1}{2}$

- Common Fast Electrooptic Modes:
 - Electrically controlled birefringence (ECB)
 - · Relaxation slow due to backflow
 - pi cell
 - Metastable pi state
 - No backflow, but relaxation rate still limited due to weak elastic forces working against viscosity
 - · ~200 Hz modulation rate considered "fast"
- Dual Frequency Liquid Crystals (DFLC)
 - Parallel dielectric coefficient is highly dispersive
 - Δε changes sign at crossover frequency (1-40 kHz)
 - Relaxation can be field driven: 0.50 ms in either direction (λ /2 @ 1.5 μ m in transmission)
 - Analog modulation requires 1°C temperature stabilization

pi cell:
$$\underbrace{\begin{array}{c|cccc} \text{Low V} & \overline{} & \text{High V} & \overline{} & \text{Low V} \\ \hline \begin{array}{c|cccc} ON & \overline{} & ON & \overline{} & ON & \overline{} \\ \hline \end{array}}_{\text{(Slow)}} \underbrace{\begin{array}{c|cccc} ON & \overline{} & ON & \overline{} & ON & \overline{} \\ \hline \end{array}}_{\text{(Fast)}} \underbrace{\begin{array}{c|cccc} ON & \overline{} & ON & \overline{} & ON & \overline{} \\ \hline \end{array}}_{\text{(Relax)}} \underbrace{\begin{array}{c|cccc} ON & \overline{} & ON & \overline{} & ON & \overline{} \\ \hline \end{array}}_{\text{(Relax)}}$$

DFLC Phase Modulation

Electrooptic Response

DFLC Phase Modulation

Reproducibility

